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The aim of this paper is to give new proofs to some theorems in Karlin
and Studden's book [5] and Balazs's paper [2]. We also obtained some
new results of a similar nature.

The general problem is as follows. Let - 00 ~ a < b ~ 00 and let ~ + I

denote the class of (n + I )-tuples (XI' ... , X n + t> with a ~ XI < .. , < X n + I ~ b
(x I and X n + I are finite). Let w(x) be a nonnegative function on [a, b].
Define

where

i = 1, 2, ..., n + 1,

and
n+1

Ln+,(x)= n (x-x;)
;=1

are the well-known Lagrange polynomials associated with interpolation.
The extremal problem is to determine the value

N= inf sup w(xHr;(x) + ... +r~+I(x)}
9t.+l a,;;, x';;' h

= inf N(x
"

..., xn+t>
9lr+ I

and a set of points {Xi}?:" which minimizes N for a fixed w(x).
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Fejer [4] showed th~t, in the case w(x) = 1 and [a, b] = [ -1, 1], the
quantity N is minimized if {xi}7~} are the roots of the equation
(1 - x 2) P~(x) = °where Pn(x) is the nth Legendre polynomial and the
minimum value of N is 1. The cases that will be treated in this paper are
listed in the following:

A. [a, b] = [ - 1, 1].

(i) w(x)=l
(ii) w(x) = (1 - x t + 1(l + x)p + 1 (IX > -1, fJ > -1)
(iii) w(x)=(l-x)Hl ((IX>-1)
(iv) w(x)=(l+x)P+l (fJ> -1)
(v) w(x)=(1-X2)H1 Ix IY (IX> -1, Y>O, n is odd)

(vi) w(x) = Ixl Y (y > 0, n is odd).

B. [a,b]=[O,oo].

(i) w(x) = e- X

(ii) w(x)=x~+le-x (IX> -1).

C. [a, b] = [-00,00].

(i) w(x) = e- x
2

(ii) w(x) = Ixl Ye- x2 (y > 0, n is odd).

Karlin and Studden [5] gave proofs for cases A(i), (ii); B(i), (ii); and
C(ii). In addition Balazs [2] considered cases A(iii), (iv) and C(ii). Cases
A(v), (vi) are new and were suggested by Askey (l). The solutions to the
above cases are listed in Theorem 1 below. The following notations, which
are mainly from Szego [9], will be used:

P~(x) denotes the derivative of the nth Legendre polynomial.
p~~.P)(x) denotes the nth Jacobi polynomial.
R~~'Y)(x) denotes the nth orthogonal polynomial with respect to

(1-x2t Ix\Y.
Ln(x) denotes the nth Laguerre polynomial.
L~(x) denotes the nth Generalized Laguerre polynomial.
Hn(x) denotes the nth Hermite polynomial.
H~(x) denotes the nth Soilin-Markov polynomial (generalized

Hermite polynomial) orthogonal with respect of Ixl Y e-
x2

.

THEOREM 1. The solutions for cases A, B, and C are the zeros of the
following polynomials:

A. [a,b]=[-l,l].

(i) (1-x2)P~(x)

(ii) P~~i3J(x)

(iii) (1 + x) p~~.I)(X)
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(iv) (I-x) p~I.P)(X)

(v) R~~/1(x) (n is odd)
(vi) (l-x2) R~I,-Yl<X) (n is odd).

B. [a, b] = [0, 00].

(i) xLn(x)
(ii) L~+I(X).

C. [a, b] = [ - 00, ex)].

0) H n + 1(x)
(ii) H~+ leX) (n is odd).

The value of N in each case is 1.

In this paper we give a new proof using the coefficients in certain
continued fraction expansions of Stieltjes transforms or equivalently, the
coefficients in the three-term recursion formula for arbitrary orthogonal
polynomials with leading coefficient one. Part of the proofs is modeled after
the results in Karlin and Studden [5] which use a theorem of Kiefer and
Wolfowitz [6] from statistical design theory. The problem of identifying
the points {x j n:/ minimizing AT in (1) is turned into one of identifying the
polynomial coefficients maximizing certain determinants. The determinants
in each case can be simply written down in terms of the coefficients from
the continued fraction expansion and the maximization trivially carried
out. The resulting coefficients are then identified with the solutions in
Theorem 1. The solutions are greatly unified and all the cases for a given
interval [ -1, 1], [0, ex)], or [ - 00, ex)] can be handled at the same time.

In the following we outline the proof in a number of steps. The details
for the various steps are given later.

Step 1. Let ~ denote a probability measure with mass 1/(n + 1) on each
point Xj' i = 1, 2, ..., n + 1. Write rex) = (1, x, ..., x n

) and M(O = Jf(x)
rex) w(x) d~(x). Then

n+1

(n+1)w(x) L r?(x)=w(x)f'(x)M-'(Of(x) (2)
j=1

and hence

N = inf sup vex; ~)
~

(3)

The infimum in (3) is over ~ with equal masses on n + 1 points. It turns out
in our situation that the same value is obtained for N if ~ is allowed to be
an arbitrary probability measure.
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Step 2. Let ~ be an arbitrary probability measure.

THEOREM 2 (Kiefer-Wolfowitz). The conditions

(i) ~* minimizes sup v(x; ~)

(ii) ~* maximizes IM(OI =det M(O

(iii) supx vex; ~*) = n+ 1

187

are equivalent. The set B of all e* satisfying these conditions is linear, and
M( ~) is the same for all e* in B.

Step 3. If ~* maximizes IM(~)I, where w(x) is anyone of the cases in
A, B, or C, then ~* is supported on n + 1 points XI' x 2, •••, X n + I and
~*(x;) = 1/(n + 1). For ~ supported on n + 1 points

n+1

IM(~)I = IMo(~)1 L w(x;).
i=1

(4 )

Here Mo(~) denotes the matrix M(~) corresponding to w(x) == 1. Note that
the weights for ~ in (4) will still be thought of as arbitrary. If w(x) is
defined on [ - 00, 00] or [ -1, 1] and is symmetric about 0, then ~* may
be assumed symmetric also. Symmetric arguments are used only for case C.
Any symmetric situations in case A result directly in a symmetric solution
without a separate argument.

For the next step we introduce some parameters to characterize ~. We
then write down (4) in terms of these parameters, perform the
maximization, and identify the solutions in Theorem 1.

The following theorem gives us a set of parameters to characterize a
probability measure on the various intervals.

THEOREM 3. (A) The Stieltjes transform of every probability measure
on [ -1, 1] with n + 1 support points has the continued fraction expansion

fl d~(x) 1 4(1(2

-I z-x =z+ 1-2(1 z+ 1-2(2-2(3

4(3(4 4(2n-I(2n
---.,----- ... --_.....:....=~:........:::~-

Z + 1- 2(3 - 2(4 z+ 1-Z(2n -2(2n+ I

or equivalently

(5)
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where (I =Pl, (i= qi-I pJor i~ 2,0 <Pi< 1 for i < 2n, O~Pi~ 1 for i= 2n,
2n+ 1, qi= 1-pJor all i.

(B) Every probability measure ~ on [0, 00] with n + 1 support points
has a Stie/tjes transform expansion

(6)

where di> 0 for i ~ 2n and d2n + 1~ O.

(C) Every probability measure ~ on [- 00, 00] with n + 1 support
points satisfies

(7)

where ai> 0 for i ~ nand - 00 < bi < 00 for i~ n + 1. For symmetric ~ the bi
are all zero.

Proof For part A, see Wall [11 or 12]. The form given in (5) is a
contraction of (5a). Parts Band C follow from Shohat and Tamarkin [8,
p.47 and 32, respectively].

In order to calculate the determinant IM(~)I in (4) we need both the
determinant IMo(~)1 and the product 07:l w(xJ

Step 4. The determinants IMo(~)1 for the three cases are given by

(A) IMo(~)1 =07~1 ((U_l(2it- i + 1

(B) IMo(~)1 =07+1 (d2/_ld2it-i+1

(C) IMo(~)1 = 07= 1 a7-.i+ I.

Step 5. The products 07';;11 w(x;) for the three cases are as follows:

(A) In this case let us write w(x)=(I-x)HI(I+x)P+ll x IY with
the understanding that y > 0 iff C1. = p. We have
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(C) Here we note that y> 0 iff n is odd,

f1 w(xi) = ~D: !xil
Y

exp ( - ~t: X~)

=(ala3 ... anfexp( -2 itl a}
Step 6. If we now multiply the corresponding expressions for IM(~o)1

and n w(x;) from Steps 4 and 5 in each case, the resulting value for IM(~)I

can be maximized using simple calculus. The resulting parameters in each
case are given by

i even, 1:( i :( n.

i odd, 1:( i :( n

/3+n-i+l

P2i= ~+/3+y+2(n-i+ 1)+ l'

n-i+ 1
P2i= ~+/3+y+2(n-i+ 1)+ l'

(A) P2i+l = ~+/3+2(n-i+ 1)'

y+n-i+l

(B) d2i +1 =oc+n-i+ 1,

d2i =n-i+ 1,

(C)
n-2i+y n-l

n odd, y>Oa2i+l = 2
0:(i:(-2-'

n - 2i + 1 n-l
n odd, y>Oa2i=

2
1:(i:(-2-'

n-i+ 1
1:( i:( n, y=O.ai=

2

Step 7. Identify the parameters in Step 6 to obtain the results in
Theorem 1.

Proofs of Steps 1-7

Step 1. Equation (2) follows by noting that v(x; ~) is invariant under
basis change for the powers 1, x, x 2

, ••• , x n and we convert to the lagrange
form ll(x), ..., In+ l(X),

Step 2. This is the Kiefer-Wolfowitz "equivalence theorem" from
statistical design theory. The proof is actually fairly simple and uses the fact
that In IM(~)I is strictly concave in M. Thus a local maximum is a global
maximum and the maximizing ~* have the same M value. Let
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~'" = (1- a) ~* + ~x, 0::::; a::::; 1, where ~x denotes the point mass at x. Let
g(a)=ln IM(~",)I. Then ~* is a local maximum iff g'(O):::;;O which is
equivalent to v(x, ~*) ::::; n + 1.

Step 3. The proof uses the fact that v(x; 0 = w(x) S2n(X), where S2n(X)

is a polynomial of degree 2n and w(x) S2n(X)::::; n + 1 and touching on the
support of ~* forces the support of ~* to be n + 1 points.

If ~* is supported by n + 1 points then IM(~*)I can be written as

n+l n+l

IM(~*)I = n w(xJ n ~*(xJ F 2
(X 1, ... , x n + d,

i=! i=!

where F(x 1, ..., X n + 1) is the Vandermonde determinant involving
XO, ...,xn + l • The maximization over the weights ~*(xJ can be done
separately and they must be all equal. For later purposes we leave the
n w(x i ) as it is and recombine the n ~*(xJ with F2

(Xi , ••• , X n + d to give
the expression in Eq. (4).

The last sentence in Step 3 follows by considering the map x --+ -x. The
resulting measure ~l then satisfies IM(OI = IM(~dl and the conclusion
follows by considering (~l + ~)/2 and the concavity of In IM(OI.

Step 4. The values given by the determinants are taken from Theorem
51.1 in Wall [12].

Step 5. The right-hand sides of (5a), (6), are (7) are rational functions
in z and it is easy to see that the support of ~ in each case is given by the
roots of the polynomial in the denominator. Let

VI -1

0U 1 V2 -1

KCl u1 U2
Un ) U2 V3 -1

V2 V3 Vn + 1 =

0 -1

Un Vn + 1

We can write down the denominators D n + I(Z) in each case:

(A)

(B)

(C)
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By expanding the above determinants for cases (B) and (C), we obtain

(B) Zn+I_C~11 di)Zn+ ... +(-l)n+ldld3· .. d2n+1

n is even

n is odd.

The term n7,:;l w(x;) can be expressed in terms of d/s and a/s for cases B
and C, respectively. More explicitly, we have

n+1
",n+l " Il ",",n+l d"(B) e-"--i~1 XI x"'+I=e-"--i~l 'd d ··.d"'+1

I 1 3 2n+ 1
i~ 1

n+12
n + 1

"
(C) e-Li~l xi Il Ix;IY =e-2Li~lai(ala2' ..., an)y

i~1

n is odd and y > o.

n arbitrary y = o.

To compute n7,:;l w(x;) for case A, we first show by induction,

n+1 2n+1
Dn +1(1) = Il (1 - x;) = canst Il q;

;=1 ;~l

n+1 n
Dn +1( - 1) = Il (1 +x;) = canst Il '2i +1.

i~1 ;~o

Next, it can be seen that 1-2'1 =0 and 1-2'2k-2'2k+l =0 for k~ 1 if ~

is symmetric about O. This is the case iff P; =! for all i. (This is the same as
b; = 0 in the expression (7).) Thus, in case ~ is symmetric about 0 and n is
odd, we have

n+l

Dn+1(0) = Il x; = canst· P2q4P6qS ... q2n- 2P2n'
;=1

Writing W(x) = (1 - x)'" + 1 (1 + x)/i +1 Ixl'" with the understanding that
1X,6 0 iff IX = p. We have

~Oll W(x;)=constC;Ul
l

q;)",+1 COo '2i+lY+l (P2Q4P6QS'''Q2n-2P2n)Y'

Step 6. This step is straightforward. We multiply the values for n w(x;)
and IM(~o)l, for cases A, B, and C separately, to give IM(~)I. The
maximization in each case is relatively easy.
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Step 7. The identification of the appropriate roots in Theorem 1 from
the parameters in Step 6 revolves around an interesting symmetry property
of the parameters defined generally in Theorem 3. This properly is stated in
the following theorem. The proof uses an induction argument and will be
omitted. Full details can be found in Lau [7].

THEOREM 4. If 0 < Pi < 1 for i = 1, 2, ..., m then

(a) the probability measures corresponding to the sequences
(PI, Pz, ... , Pm' 0) and (Pm' Pm- j, ..., PI' 0) have the same support. Further,
the probability measures corresponding to (PI,PZ' ""Pm' 1) and
(qm' qm- I' ... , q I' 1) have the same support. Similarly in cases (B) and (C), if
di > 0, ai > 0 for i = 1, ..., m then

(b) (d l , , dm, 0) and (dm, , dj, 0) have the same support and

(c) (ai, , am, 0) and (am, , ai' 0) have the same support.

With the aid of Theorem 4 the results given in Theorem 1 are more or
less immediate. The required Stieltjes expansions for the identification for
cases A, B, and C are taken from Van Russom [to, case A on pages 51 and
56, case B on page 41, and case C on page 45]. Some of these are also
given in Wall [12, formulas (89.16) and (92.4)].

To identify parts (i)-(iv) in case A we make use of the fact that the
Stieltjes transform of the Jacobi weight function (1 - x)a + I (1 +x)p + I has
an infinite expansion as in case A in Theorem 3 with parameters given by

k

PZk = (X + f3 + 2k + 3'

f3+k+2
PZk + I = (X + f3 + 2k + 4'

k~ 1,

k~O.

(8 )

Special cases of interest correspond to (X = f3 = -~ and (X = f3 = -1. The
situation (X = f3 = -~ is associated with the Chebyshev polynomials of the
1st kind and we have Pi = 1, for all i. For the Lebesgue or uniform measure
with (X = f3 = -1 the resulting parameters are Pi =! for i odd and
PZi = i/(2i + 1).

Consider part (i) of case A. The parameters Pi maximizing IM(~)I are
given from Step 6 as

PZi+I=!

n-i+ 1

PZn = 1.

i =0, 1, ..., n - 1

i = 1, 2, ... , n - 1 (9)
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On comparing this sequence with the sequence for the uniform measure we
note they both have Pi = ! for i odd. The even indexed parameters for the
uniform measure are i, ~, ~, ..., etc. while the even parameters, maximizing
IM(~)I are given, in reverse order, by j, ~, ~, ....

Part (a) of Theorem 4 implies that the measure maximizing IM(OI for
part (i), case A has the same support as the sequence

P2i+i=!'

P2i = i/(2i + 1),

P2n = 1.

i = 0, 1, ..., n - 1,

i = 1, 2, ..., n - 1, (10)

This sequence is obtained by "truncating" the sequence from the uniform
measure by setting P2n = 1. The resulting support in this case is on ±1 and
the zeros of the (n - 1)st polynomial orthogonal with respect to (1 - x 2

) dx
which is precisely the polynomial P~(x) given in part (i), case A of
Theorem 1.

It is interesting to note that the finitely supported measure corresponding
to (10) is associated with a classical Gauss-type quadrature formula using
the end points ± 1. The reversed sequence in (l) has precisely the same
support and uniform weights.

The same phenomenon occurs in all the other cases including cases
Band C. To illustrate further, consider part (ii) of case A. Here the
maximizing sequence from Step 6 is given by

fJ+n+l-i
P2i+i = r.x+fJ+2n-2i+2'

n+l-i
P2i= r.x + fJ + 2n - 2i + 3'

P2n+2 =O.

1~ i~ n, (11 )

If we take the sequence from (8) with the weight (1- x)~ (1 + x)li, truncate
the sequence with P2n + 2 =0 and reverse the 1st 2n + 1 parameters we
obtain (11). Using part (a) of Theorem 4 the support is on the zeros of
Jacobi polynomial as stated in Theorem 1.

The remaining cases are similar and are omitted.
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